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An empirical sampling study investigated six procedures for testing

Ail =42 in the presence of unequal n's and variances. Support was obtained

for previous research which found t robust to heterogeneous variances only

when n's are equal and of moderate size. The procedure which emerged as

providing the best control over Type I errors while maintaining satisfactory

power in all test conditions was the Behrens-Fisher v statistic with Welch's

solution for df. The general recommendations when the population variances

are unknown are: (1) when n's are equal and > 20 it is permissible to use the

t statistic with df = 2n - 2, but when n4:20 use v with Welch's solution for

df; (2) when n's are unequal use the v statistic with the Welch adjustment for

df.
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Scheffg (1970, p. 1501) begins a recent article by stating "The most fre-

quently occurring problem in applied statistics is, in my opinion, the com-

2
parison of the means of two populations,... .Let O+1 and 01 denote the popula-

2 2
tion variances. It is called the Behrens-Fisher problem if the ratio 9 = ovc;

is unknown and the assumption is added that the populations are normal. The

normality assumption is of no practical importance for any of the solutions...

based mainly on the difference of the sample means are robust against its

violation." Despite the fact that B is unknown in most empirical studies,

the Behrens-Fisher problem is ignored in many behavioral statistics books

(Ferguson, 1966; Guilford, 1965; Glass & Stanley, 1970; Dayton, 1970; Myers,

1966; Watt & Bridges, 1967). Instead the null hypothesis ''l xe2 is usually

tested by the conventional t test with df = nl + n2 - 2 as if the assumption

that e = 1.0 were based on something other than the experimenter's hope. This

article will attempt to point out that there are other practical solutions to

this problem which do not need this dubious assumption.

Behrens (1929) provided the first "exact" solution for this problem, which

coincides with the Bayesian solution of Jeffreys (1940) and Savage (1961).

Fisher (1935) extended Behrens' work and the statistic used became known as the

Behrens-Fisher statistic, v (Winer, 1962, p. 37). Tabled probability values

were prepared by Sukhatme (1938) and are reproduced in Fisher and Yates (1963).
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Welch (1947) proposed an exact test for v, which was subsequently tabled

by,Aspin (1949). Welch (1949) reports little difference between these critical

values and an approximate solution obtained by adjusting the df of t (Winer,

1962, p. 37; Kirk, 1968, p. 98) so that,

(dfl)(df2) _2 .df = , where C =

df2C + dfl(1 - C)
2

s/n + s
2
/nsi /nl

2

The critical value of t (N, df) is contrasted with v to complete the test. We

shall label this the v-W solution,

Several other methods have also been suggested which seek to approximate

the sampling distribution of v. Satterthwaite, (1946, p. 114) offered a df

adjustment where df can range from ns - 1 (where ns is the smaller n) to

nl + n2 - 2. The df solutions of Welch and Satterthwaite are algebraically

equivalent. Dixon and Massey (1957, p. 124) and Hays (1963, p. 322) present

a formula which is a slight variation of the one given by Satterthwaite. A

critical t procedure on the conservative side was devised by Cochran and Cox

(1950, p. 92).

Scheffe (1943) described the following solution to the Behrens-Fisher pro-

blem. Let group 1 and 2 represent the smaller and larger groups respectively.

The observations in each group are randomly ordered, and nl values of a new

variate, Ui, are computed by:

= X
li

- (n
1
In

2
)X2i , wherei = 1, ...n,
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A t-test that the mean of the U variate is 0.0 (or a corresponding confidence

interval) is then conducted using the U's as the input data. Scheffg demonstra-

ted that the expected value of the width of 95% confidence intervals produced

by the above method was no greater than 11% longer than the width when the

population variances were known and n 10. Some statisticians are unhappy with

randomization procedures such as the above, since E's may obtain different

results with the same set of initial data.

Scheffg himself suggested discarding this method because he apparently

found that some experimenters who did not like the width of the confidence

interval obtained merely rerandomized and computed a second interval (Scheffg,

1970, footnote 3). However, if the data is entered into a computer, with

automation doing the randomization, the experimenter usually will be oblivious

of this temptation.

Another possible method is a chain logic approach. Games and Klare (1967,

p. 494) suggested using t if equal n's greater than 10 are present. Otherwise

F = s
1

2
/s

2
is computed aid tested at O( = .10. If this test is significant, v

with Welch's df is used. If not, the conventional t is used. The probability

of Type I errors, P(EI), resulting from this method may be expected to fall

between that of t and of v with Welch's adjustment to df.

There are many other approximations to the sampling distribution of v, end

many other procedures for handling the Behrens-Fisher problem. A search of the

mathematical statistics literature obtained over 50 references of which 27 were

published in 1960 or later.

Scheffg (1970) compared six solutions: the Behrens-Fisher solution; his

1943 solution, S; the conventional t test; the use of v with t(%, ns - 1); the

Welch-Aspin solution; and the v-W. His conclusions on the conventional t

test may shock naive users. "....this solution of the Behrens-Fisher problem
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is asymptotically incorrect for large unequal sample sizes, elementary calcula-

tions showing that we) may take on any value between 0 and 1 for any o((0< cg < 1)

and for suitable 0 and suitably large nl, n2. The practical conclusion is that

this solution should never be used unless nl and n2 are equal or nearly so

(1970, p. 1506)." His 0(9) = P(EI) in the present paper. When nl = n2 = n

then the limit of P(EI) is P[1t(n - 1)1] > t(0(, 2n - 2). Thus when = .05

and n = 10, the limit of P(EI) is .065. For larger equal n's, P(EI) will

deviate less from o(.

Scheffe (1970) concludes that only the use of v with tOX, ns - 1) as the

critical value, the Welch-Aspin solution, and the v-W solution are practical.

He finds little difference between the last two. The use of v with t (X, ns - 1)

is conservative and has a lower power than the v-W. Thus he concludes

"....Welch's approximate t-solution, which requires only the ubiquitous t-tables,

is a satisfactory practical solution of the Behrens-Fisher problem" (1970, p.

1505).

Wang (1971) presents results that confirm the similarity of the Welch-

Aspin and v-W solutions, and the excellence of control of P(EI) by the v-W

test. With n
s

as small as 5 and 9 varying from .0078 to 128, he finds that

P(EI) does not deviate from of by more than .0035. When ns is increased to 7,

the maximum deviation drops to .0018; with n = 11, to.0005; aild to .0002 with

larger n8 values. Thus the v-W test is supported as an excellent procedure

whenever the population variances are unknown, and as an absolute necessity

when the sample sizes are unequal.

Method

An orthogonal design was used to contrast the P(EI) and power of six

methods across three dimensions. The condition of heterogeneity of variance
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was represented by seven levels of variance ratios (VR): 070' of .025, .25,
1

.5, 1.0, 2.0, 4.0, and 40.0. The proportionality of n's was represented by

four levels of sample size ratio's (NR): n2 /n.1 = 1.00, 1.25, 1.50, and 3.00.

Sample sizes (SS) was represented by three levels: n values of 4, 12, and
1

24. These three dimensions were completely crossed making 7 x 4 x 3 = 84

conditions that were investigated in the study. Six points on the power curve

were established for each condition. This always included the condition where

A (1 -iq
2
= 0.0 (i.e., the null is true), plus five other evenly spaced points

chosen to avoid a ceiling effect for the last condition. The six procedures

used were: (1) t referred to the t distribution with df = n
1

+ n2 - 2;

(2 and 3) v referred to the t distribution with Welch's (v-W) and Dixon and

Massey's (v-DM) solutions for df; (41 v referred to Cochran and Cox's critical

t (v-CC); (5) chain logic approach of Games and Klare (G & K); (6) Scheffe's

procedure (S).

A FORTRAN IV computer program written for the IBM 360167 generated a

2
population of 9998 cases having the following parameters: At = 0.0012; Or= 1.0129;

skewness, Y1 = 0.002; kurtosis, "Y2 = -0.0322. Each computer run involved the

following steps:

(1) Generation of the above population.

(2) A sample of n
1
cases (representing group one) was drawn from the popu-

lation. All sampling was with replacement. The normal deviate was multiplied

by a constant representing the desired standard deviation to produce different

variances when desired. A constant (0 to 11.0) was added to the randomly

drawn value so that the population mean of group one might differ from that of

group two when desired

(3) A sample of n2 cases (representing group two) was drawn from the
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population. The population mean of group two was fixed at zero throughout the

study. Since the mean for group one was the only one to vary, the tru

difference, RI - Al was always positive in value. The variance of group two
2

was manipulated in the same manner as in group one.

(4) The sample statistics required for conducting all significance tests

for each of the six procedures were computed.

(5) Significance tests were conducted for all six statistical procedures

at the .02 and .05 levels and the number of significant results were tabulated

for each.

(6) Steps (2) through (5) were repeated until 250 simulated experiments

had been obtained.

(7) The proportion of significant results at each significance level for

each statistical procedure were punched.

(8) Steps (2) through (7) were repeated until four blocks of 250 samples

each were drawn.

(9) Steps (2) through (8) were repeated for each value of 41 -42.

(10) Steps (2) through (9) were repeated if n 0 n and 101 0 0'2, switching

the desired variance from group two to group one. This permitted the larger

variance to be combined with both the larger and the smaller n.

All calculations were performed in double precision to insure the greatest

possible accuracy. The pseudo-random number generator used in the study was

prepared by Knoble (1969). Single precision, floating point values are returned

which are approximately serially independent and uniformly distributed on the

unit interval. The cycle length is 231 - 2. Different sequences of pseudo-

random numbers are obtained by entering the sequence at a different point.

Statistical properties of the generator may be found in Payne, Rabung, and Bogyo

(1969) and Lewis, Goodman, and Miller (1969).
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RESULTS

Case Where the Null Hypothesis is True

For brevity, tabular results are presented for only four of the techniques.

The critical values of Cochran and Cox are greater than or equal to those of

the Welch approximation. The Welch critical values are greater than or equal

to those of Dixon and Massey. Since methods 2, 3, and 4 consisted in referring

v to these critical values, it is clear that P(EI) and power will vary system-

atically between them. The study confirmed that the v-W solution P(EI)'s are

closest to alpha while the v-CC method is systematically conservative, and the

v-DM method is systematically permissive.

Table 1 summarizes P(EI) of the v-W and the remaining competitive solutions

for the conditions producing the greatest (n1 = 4) and least (n2 = 24) dis-

crepancies. Since there are 1000 observations, any proportion less than .0365

and greater than .0635 is significantly different from alpha at the .05 level.

In general, the t statistic revealed the expected distortion to P(EI) when

both variances and n's are unequal. Conservative results occur when the

largest variance is combined with the larger sample, while an excessive number

of rejections of Ho occur when the largest variance is paired with the smaller

sample. As the n-ratio increases this effect also increases. It is clear

that the t test is not robust to the homogeneity of variance assumption when

n's are unequal. Note that increasing the sample size does not eliminate the

distortion to P(EI) when t is used with unequal n's. The Welch, Games and

Klare, and Scheffg techniques all reduced the is fluctuations, the improvement

in control over P(EI) gez,erally increasing with increased sample sizes. Only

slight deviations from the theoretical .05 value occurred for these three

methods.
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TABLE 1

PROPORTION OF SIGNIFICANT RESULTS
WHEN H

0
IS TRUE, 0(= .05

BEST COPY AVAII"ur

N-R V-R t

Small Sample Size

v-W G&K

Procedures

S t

Large Sample Size

t-W G&K

1.0 0.025 .092* .065* .068* .057 .060 .058 .060 .056

1.0 0.25 .060 .046 .051 .049 .060 .058 .060 .056

1.0 0.5 .061 .049 .051 .049 .059 .056 .059 .057
1.0 1.0 .053 .047 .052 .051 .048 .048 .048 .046

1.0 2.0 .048 .040 .046 .042 .038 .038 .038 .035*
1.0 4.0 .056 .047 .053 .057 .049 .047 .049 .044
1.0 40.0 .088* .060 .062 .054 .053 .052 .053 .052

1.25 0.025 .062 .062 .062 .061 .034* .(,46 .046 .051

1.25 0.25 .042 .042 .042 .030* .030* .045 .045 .046

1.25 0.5 .03f' .037 .036* .047 .057 .064* .063 .060
1 25 1.0 .055 .050 .051 .048 .055 .056 .057 .058
1.25 2.0 .066* .051 .056 .044 .062 .047 .054 .052

1.25 4.0 .081* .060 .069* .050 .059 .048 .048 .046

1.25 40.0 .104* .057 .058 .053 .092* .046 .046 .047

1.5 0.025 .031* .048 .046 .061 .015* .046 ,046 .046
1.5 0.25 .033* .039 .038 .045 .036* .051 .050 .053
1.5 0.5 .034* .040 .039 .050 .029* .047 .043 .046
1.5 1.0 .043 .039 .043 .051 .047 .048 .048 .049

1.5 2.0 .062 .048 .053 .045 .073* .054 .058 .052

1.5 4.0 .094* .063 .078* .048 .085* .048 .048 .049

1.5 40.0 .156* .060 .062 .052 .115* .050 .050 .047

3.0 0.025 .005* .053 .053 .049 .000* .041 .041 .048

3.0 0.25 .005* .043 .033 .056 .009* .042 .041 .057
3.0 0.5 .028* .060 .056 .056 .018* .047 .043 .063
3.0 1.0 .051 .061 .067* .065* .055 .058 .053 .063

3.0 2.0 .104* .053 .091* .044 .096* .051 .059 .057
3.0 4.0 .145* .059 .102* .045 .144* .046 .046 .048
3.0 40.0 .301* .057 .063 .058 .221* .046 .046 .057

* Represents significant deviation from c".:(
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Special Case of Equal Sample Sizes

Equal sample sizes represent a special case in which prior research has

revealed general robustness of t in the face of heterogeneous variances.

Sample size, variance ratio, and the procedures of Table 1 were factors in a

3 factor ANOVA of P(EI).

4
The major significant source of variance was the procedures main effect

which accounted for an estimated 18 per cent of the variance. The mean P(EI)

for the t, Welch, Games and Klare, and Schnffe procedures were .0576, .0511,

.0540, .0508 respectively. For the intermediate and large equal n cases all

four procedures exercise adequate control over Type I errors. The Welch and

Scheffe methods were the most stable across situations.

Case of Varying Degrees of Deviation from Ho (Power)

For a more complete comparison of the four procedures a series of power

curves were plotted. The power curves that are graphed and discussed in the

following sections are those of the intermediate n case. The essential

difference between the curves of the intermediate n case and those of the

small n case is that the curves for the Welch, Scheffe, and Games and Klare

procedures are further apart when n's are small and become progressively

closer as sample size increases.

Special Case of Equal Variances

2 2

When 0
'1

=a
2
and the populations are normally distributed, as in this study,

then the t test is the most powerful possible test. When the variance ratio

was 1.0 and the n-ratio was 1.25 (n
1
= 12, n

2
= 15) the power curve for t was

indistinguishable from those for Welch's solution and the Games and Klare pro-

cedure. As the n-ratio increased to 3.0 (n1 = 12, n2 = 36) some separation of

the power curves occurred. In this region the t demonstrated the highest power

-9-



with the Welch solution close behind followed by the Scheffe procedure. The

power loss by using the Welch technique did not exceed .05.

Unequal Variances with Unequal n's

When the larger variance occurs for the sample having the larger number

of observations the t becomes conservative with respect to control over P(EI).

This occurs even for small variance differences. The most extreme combination

of unequal n's and variances was represented in the case where n
1

= 12 and n
2

= 36

2 2
with 01 = 1.0 and 0'2 = 40 (VR = .025). Figure 1 presents the power curves for

this situation (dashed lines). The loss of power for t is very noticeable. A

less pronounced effect, with VR =.5 (solid lines) was found.

The situation where the large variance occurs for the sample having the

fewer cases effects t by inflating P(EI). This effect was apparent with n-ratios

as small as 1.25. A case in point is that in which n1 = 12, n2 = 15, as shown

2

in Figure 2. When the variances were °I = 40.0, and 0'2 = 1.0, The Welch,

Scheffe, and Games and Klare procedures are nearly indistinguishable in terms

of power. Each offers excellent control over P(EI) and while t is highly inflated.

When the n-ratio is increased to 3.0 (n1 = 12, n2 = 36) the effect on t is

extreme, with a highly inflated risk of a Type I error and a spuriously high

power as shown in Figure 2. This effect is not mitigated when n's are increased

to 24 and 72.

When n's diverge to the extent of 3:1 variance ratios as small as 2.0

(01 = 2.0, 0'2 = 1.0) had a readily discernible effect upon t. Characteristi-

cally, the t revealed an inflated risk of a Type I error with correspondingly

high power. Adequate_control over P(EI) was attained by the other test procedures.

The Welch solution had a slight edge in power over that of Scheffe. The Games

and Klare method was superior to both the Welch and Scheffe methods in terms of

power, but this was at the expense of an inflated P(EI) of .066.

-10-
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DISCUSSION

If the population variances are known, the classical normal curve test

(Bloomers & Lindquist, 1960, p. 256) is the most powerful possible test and

should be used. In practice, whenever t is considered, the population vw!iances

are unknown. Most of the time, there is little if any a priori basis to

dc:fend the assumption that the two unknown population variances are equal.

The notion of additive treatment effects is a simplification that does not

necessarily exist in reality. Treatment effects may be multiplicative with

some individual difference parameter, or produce unequal variances because of

some other interaction with subjects.

The present study demonstrates that the Games and Klare technique and the

Scheff6 test are superior to the conventional t test. However, the Scheff6

test has the liability that it could produce different results when different

randomizations are used. The Ganes and Klare procedure has the disadvantage

of a multi-stage test. Nowhere in our study did either of these tests show any

advantages over the v-W technique. Wherever differences were noted, they were

in the direction of the superiority of the v-W test over all of its competitors.

The present study (Kohr, 1970)was conducted prior to the appearance of

the two major theoretical papers supporting the use of the v-W technique by

Scheff6 (1970) and Wang (1971). As such, we find ourselves in the embarrassing

position of empirically demonstrating the superiority of a test that can now

be shown to be superior by theoretical analyses.

The present state of knowledge suggests that the conventional t test be

used only when n
1
- n

2
= n and n is moderate to large. The t is tolerated in

this case only because its permissive bias (when 0"
1

0 0") is very mild. Even
2

in this case, the user would be better off using the v-W solution. However,

when nl = n2, then v = t, and the Welch critical value can vary only between
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t(a, n-1) and t(a, 2n - 2). Using a = .05, when n = 21, the critical value

could vary only between 2.086 and 2.021. In this situation, the t test may be

tolerated as a good approximation to the more accurate v-W solution, since the

area between these two points is small. For small n's, the range of critical

values possible under the Welch solution is larger, and the complete v-W

solution should be used. When n's are unequal, the v0t, and the v-W solution

should always be used. The Wang (1971) study considered a minimum sample

size of 5, and the present study used a minimum size of 4. It is possible

that with samples of only 2 or 3 cases, the v-W solution may not adequately

control P(EI), but it is hard to conceive of any behavioral study that should

be conducted with samples of this size.
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